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A Robust Algorithm for Joint-Sparse Recovery
Md Mashud Hyder and Kaushik Mahata

Abstract—We address the problem of finding a set of sparse sig-
nals that have nonzero coefficients in the same locations from a
set of their compressed measurements. A mixed � � norm opti-
mization approach is considered. A cost function appropriate to
the joint-sparse problem is developed, and an algorithm is derived.
Compared to other convex relaxation based techniques, the results
obtained by the proposed method show a clear improvement in
both noiseless and noisy environments.

Index Terms—Basis pursuit, compressive sampling, joint-sparse,
multiple measurement vectors, sparse representation.

I. INTRODUCTION

A signal is called -sparse if it has at most
nonzero components. The recent research in compressed

sensing has revealed that a -sparse can be uniquely recovered
from a ’measurement’ , , of the form

where is a known measurement matrix [1]. Two
conditions are needed to ensure that can be recovered from
uniquely by using minimization: i) and ii) every
columns of form a basis of . Like the recovery of sparse
signals, another closely related problem is getting increased at-
tention of the research community. Here, one is interested in re-
covering a jointly row sparse matrix from formed
by multiplying by

(1)

By the term “jointly row sparse” we mean that only rows of
are nonzero. The problem of recovering jointly sparse ma-

trices will be called the multiple measurement vector (MMV)
problem, which arises naturally in source localization, neuro-
magnetic imaging [2], and equalization of sparse communica-
tion channels [3], and several other applications [4]. The fol-
lowing lemma [2] gives the sufficient conditions for the exis-
tence of the unique solution to the MMV problem.

Lemma 1: Let rank , and every columns of
forms a basis of . Then a solution to (1) with nonzero

rows is unique provided that ( denotes
the ceiling operation).
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Researchers spanning a diverse range of viewpoints have ad-
vocated mixed-norm minimization approach to solve the MMV
problem. Here, one solves

(2)

for various combinations of and , where the mixed norm
is defined as

Cotter et al. [2] use , Tropp [5] analyzes for
and Elder et al. [6] use . In [6]

the sufficient conditions for MMV recovery by using and
are presented. Berg et al. [4] analyze some properties

when and . In a broad sense, all these
algorithms offer some form of convex relaxation to the case

, which guarantees unique recovery under the as-
sumptions of Lemma 1. Unfortunately, this case of
leads to a nonconvex problem which is not tractable. ReMBo
[7], on the other hand, reduces MMV to a series of SMV prob-
lems. ReMBo proceeds by taking a random vector
and combining the individual observations in into a single
weighted observation . Subsequently, it solves a single
measurement vector problem by using a suitable al-
gorithm and checks if the computed solution is sufficiently
sparse. If not, the above steps are repeated with a different ; the
algorithm stops when a maximum number of trials is reached.
Once the ReMBo algorithm has found a sufficiently sparse solu-
tion it solves a least-squares problem using only those columns
in corresponding to the support.

Most the proposed methods achieve a good recovery rate for
small values of . However, to the best of our knowledge, it has
not been possible to achieve good recovery rate when is close
to the upper bound provided by Lemma 1. This in some applica-
tions can lead to limitations. For example, in source separation
application, denotes the number of sources that a fixed sensor
array can handle, and being able to recover signals with larger

leads to a significant improvement. Another important issue
is the performance of the algorithms in presence of measure-
ment noise. In the numerical simulations it was found that most
of the algorithms suffer from performance degradation in pres-
ence of noise. In order to cope with these issues, we advocate
using and in (2). We extend the zero-norm approx-
imation algorithm [8]. The new algorithm is called JLZA. Sim-
ulation results indicate that the proposed approach does achieve
the theoretical limit on given by Lemma 1. In addition, it is
fast, and robust to the measurement noise. Furthermore, when
increases, the complexity of JLZA remains almost constant.
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II. JOINT APPROXIMATION ALGORITHM (JLZA)

In the following, we develop an algorithm to solve (2) with
an approximation to . One can write as

where the th row of a matrix is denoted by , and is
the indicator function

otherwise.
(3)

Since is nonsmooth, we work with an approximation of
using Gaussian functions [9]. Let

(4)

Clearly Consequently, the function

behaves like when . This motivates the fol-
lowing approximate way of reformulating (2) for and

:

(5)

However, has many local maxima for small values of .
Nevertheless, as increases, becomes smoother, and for
a sufficiently large , one has [9]. Hence,
the standard procedure is to take a large initially and solve
(5). Subsequently, is reduced by some small factor and (5)
is solved again. The procedure is repeated until a convergence
criterion is satisfied.

Algorithm Derivation

The Lagrangian for (5) is

(6)

Let us define the matrix , such that
where denotes the element of at its th

row and -th column. Now (5) implies that the stationary point
of satisfies,

(7)

Also, it is readily verified that

(8)

where .
Then (7)–(8) gives

(9)

TABLE I
JLZA ALGORITHM

Fig. 1. Recovery rates (averaged over 100 trials) for randomly generated� �

with different sparsity �. The value of � is fixed to 50 and � � ��.

Substitute this for in the second equation of (7), then solve
for , and substitute the solution to in (9) to get

(10)

Equation (10) is nonlinear, and it can be used in a fixed-point
iteration. The following Lemma indicates that if a certain con-
dition holds then the algorithm will converge to a local maxima.

Lemma 2: Let us define the map such that

(11)

Then . Let such that ,
, and

(12)

Then there exists satisfying such that

Lemma 2 is a generalization of Lemma 1 in [8].
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Fig. 2. Average recovery time of various MMV techniques. The value of � � ��� and � � ��.

Algorithm

The final algorithm is given in Table I. In the algorithm,
denotes the value of updated at iteration. We start with
for , [9] and set for the first iteration. For maxi-
mizing , we use as ascent-direction. By choosing a
proper factor i.e., , the algorithm can be accelerated
to converge the optimal solution rapidly. However, in our exten-
sive experimental study we have noticed that is sufficient,
backtracking (step 3–4) is not needed. We fixed to 0.5. The
inner-iteration for maximizing for a given terminates when

, see step 6. A wide range of numerical experiments
suggests that the best setting of is 0.5. The stopping criterion
of JLZA is based on a small denoted by . Upon convergence
of each inner iteration we lower by a factor (step 6). When

reaches to , JLZA stops its iterations. The final value of
depends on the noise level. For noiseless sparse recovery, is
chosen to 0.1 and is fixed near to zero ( ). How-
ever, in the noisy case, should be left at some larger value as
the system can not approximate the optimal exactly and the
solution fluctuates randomly. A wide range of numerical simu-
lations in noisy cases suggests that the best setting of
and . Note that calculating in step 4 requires in-
verting [see (10)]. However, may be close
to singular in some cases. To make this situation tractable, we
use instead of .

III. SIMULATION RESULTS

Two types of experiments are presented: exact signal recovery
in noiseless case (Figs. 1–2) and approximate signal recovery in
noisy environment (Figs. 3–4). We choose and

. For experimental setup, we consider the procedure of [7].
The following steps are repeated 100 times for each experiment.
i) We construct consisting of iid Gaussian random
variables with zero mean and variance one, ii) for every sparsity
( ), we generate a row sparse matrix . The nonzero
location set is drawn uniformly at random among choices.
The nonzero elements are iid Gaussian random variables, as
in (i). We compare the performance of JLZA to , and

ReMBo. We also decompose the MMV problem into a series of
SMV problems. That is we consider every column of indepen-
dently, which generates SMV problems. We then solve them
independently by using (SMV- ) and orthogonal matching
pursuit (SMV-OMP) algorithms. We use SDPT3 [10] through
the CVX interface [11] for ReMBo, and 1. In the ReMBo
algorithm, the components of (see Section I) are iid
random variables with uniform distribution on , while the
associated SMV problem is solved by using both basis pursuit
(ReMBo-BP) and orthogonal matching pursuit (ReMBo-OMP).
In orthogonal matching pursuit, we stop computation when the
second norm of residual error becomes smaller than . We
allow a maximum of ten iterations to recover using dif-
ferent .

In the noiseless cases, we say is to be recovered when
the reconstructed satisfies . In the
noisy environment, the objective function of the convex relax-
ation based approaches [(2)] is modified as

(13)

where is the variance of the noise signal. The similar model
is used for the SMV solver used for ReMBo. The SNR is used
to measure performance. SNR is defined as

Our simulations are performed in MATLAB7 environment
using an Intel Core 2 Duo, 2.66-GHz processor with 2 GB of
memory, under Mac OS X Version 10.5.5 operating system.

Fig. 1 shows the recovery rate as a function of for various
techniques in noise-less case. Note that JLZA achieves a very
high recovery rate for , and 29 happens to be the upper
bound given by Lemma 1. Note in Fig. 2 that and re-
quire large recovery time compared to ReMBo. Note that while
the recovery time of ReMBo is not affected by , it increases
quickly with (i.e., ). The average recovery time of

1Source code at http://www.cs.ubc.ca/~mpf/?n=JointSparse
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Fig. 3. Average SNR achieved by various MMV techniques. The value of � � ��� and � � ��.

Fig. 4. Average SNR (on 100 runs) versus � for fixed � � ��, � � ����,
� � ��� and � � ��.

JLZA is not affected by and , which, however, will increase
with increasing . This is because the evaluation of in
(11) depends on .

The performance of different algorithms in noisy environ-
ment is investigated in Figs. 3–4. A model including additive
noise can be written as where consists of
iid Gaussian random variables with mean zero and variance .
RemBo-OMP, SMV- and SMV-OMP perform poorly with
noisy data, and results are not shown. As opposed to convex op-
timization methods, JLZA demonstrates an improved recovery
rate in noisy environment. Fig. 3(a) shows the level of sparsity
needed to estimate a noisy signal from a fixed measurement.
Observe that JLZA enjoys a clear superiority over other algo-
rithms. Also, for each algorithm there is a critical level of spar-
sity. When sparsity increases beyond this level, the performance
drops rapidly. The level is 15, 18, 25, and 32 for ReMBo-BP,

, and JLZA, respectively. Fig. 3(b) demonstrates the ef-
fect of on joint-sparse signal for different algorithms. Finally,

Fig. 4 provides a comparison of SNR archived by different al-
gorithms as a function of , showing the improvement achieved
by JLZA.

IV. CONCLUSION

An approximation algorithm is applied in joint sparse
multiple measurement vectors problem. In contrast to other
convex relaxation algorithms, the proposed algorithm shows
a clear performance improvement. Furthermore, the empirical
results suggest that the proposed algorithm can achieve the
theoretical limit of sparsity with very high probability.
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